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NOMENCLATURE

N normal load, kips

M moment, kip-inches

F material strength, ksi

C cross-sectional limits, inches

H element thickness, inches

w element width, inches

y vertical axis

x longitudinal axis

E elastic modulus, ksi

n strain-hardened exponent

K strength coefficient, ksi

σ normal stress, ksi

ε normal strain

θ slope, degrees

Subscripts

t y tensile yield

tu tensile ultimate

cy compression yield

e elastic

p inelastic

N normal

M bending

o elastic limit

y vertical axis

1 minimum strain data

2 maximum strain data

k zone number



TECHNICAL PAPER

TEST LOAD VERIFICATION THROUGH STRAIN DATA ANALYSIS

I.  INTRODUCTION

Increasing demands for more reliable and affordable access to space is promoting leaner and
more innovative structural designs that invoke more reliance on experimental verification. This com-
pelling shift should raise concerns on how well verification tests are implemented. A brief review of
verification requirements and methods revealed a potential test load transfer error at very flexible
structural boundaries. A technique for identifying and analyzing applied load diversions is suggested.

Least initial and recurring costs of high-performance structures are achieved through select
combinations of new materials and manufacturing processes, advanced modeling technologies, lim-
ited arbitrary design factors, etc. These performance cost improvements are balanced with the cost of
reliability design that is reflected in structural weight increase leading to recurring increased delivery
cost. Proof of this delicate design balance between performance and reliability depends, first on per-
formance verification through structural response testing, and then on verification of design environ-
ments through field and flight testing. Success of these verifications is further predicated on the true
transfer of environments onto the structure.

Assemblies of large, high-performance structures are inherently very flexible. And though
structural boundary rotations and deflections at externally applied loads are not significant to
response verification up to operational limits, successively larger boundary loads and distortions
approaching rupture may unknowingly compromise the ultimate safety criteria with serious conse-
quences. Improperly transmitted verification loads may reject a perfectly adequate design or accept a
submarginal one. Both lead to costly redesign, with the latter case being discovered after flight test,
which is at a worse quality level phase.1

A technique was developed to measure and analyze the variance of the transmitted verifica-
tion loading through the most commonly encountered structural element. A one-dimensional bending
and normal loading element was selected for developing strain response models throughout the
elastic and inelastic ranges. The technique uses strain data from two back-to-back surface-mounted
gauges to analyze, define, and monitor the induced moment and plane force through progressive
material changes from total-elastic to total-inelastic within the cross section. Measured boundary
applied loads and calculated induced loads from strain data are compared. Deviations caused from
excessive local deformation and deflections are identified by the consecutively changing ratios of
moment-to-axial load. Resulting deviations may be analyzed and correlated for compliance with
safety criteria.

The analysis is simplified through the application of an elastic-inelastic two-parameter
material model. The analytical approach is also applicable with plastic theory,2 or tabulated inelastic
properties. The analysis is programmed in basic for convenience and expediency. Inplane and trans-
verse shear load deviations may also be analyzed through similar instrumentation and analysis. The
technique can be extended to multiaxial stresses and to other strength-of-materials elements as
necessary.
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II.  STRUCTURAL  INTEGRITY

All such current design processes as customer’s voice, total quality management, concurrent
engineering, etc., stem from the core design philosophy on integrity. Tenets of design integrity are
that it must perform well under a liberal range of environments, over a specified life, and reliably.
Challenges are to reduce these basics into engineering specifications, design to them, and determine
the extent and methods for verifying them with least cost. Genuine incentives for producing high
structural integrity products are to experiment in quality test methods. Selection of a structural ver-
ification option, its conduct, interpretations, and design feedback are some of the most important
development functions in fixing manufacturing processes, operations reliability, and cost character-
istics into a product’s total life cycle. Verification criteria should be updated and satisfied through
refined design analyses, similarity with successfully operating structures, or experimental testing.
Experimental testing is often the most expensive and difficult to satisfy and is the focus of this
quality function.

A.  Verification

Commonly stated requirements for experimental testing are to verify design assumptions,
expose incomplete analysis, avoid sneak phenomena, affirm critical-failure and postfailure modes,
reveal unique response characteristics, verify math model responses and margins, and develop
inspection procedures. Experimental testing may provide insights to redundant failure modes and to
foolproof concepts that need to be introduced in critical manufactured parts, assemblies, joints, seals,
and changeout interfaces. Tests might also identify operational bottlenecks ensuing when quality
targets are set at higher levels than previously experienced and levels are difficult to achieve.

Of these requirements, safety margin verification is the prime concept driver. Tests may be
performed to failure or to no-failure. A no-fail test provides limited margin experience, no matter how
successfully it operates thereafter. It does provide multiple opportunities to verify, on a single article,
predicted responses in many high-stress regions subjected to different operational environments.
Test and field or flight tests are no-fail types of tests requiring no additional hardware costs.

However, it should be recognized that most structural tests provide only limited surface data
that must be correlated with design math models to completely verify yield and fracture stresses.
Tests whose boundaries and operational environments are difficult to simulate may also yield results
that are difficult to interpret. Therefore, components and critical structural regions of no-fail test
articles should be off-line tested to fracture, provided binding loading conditions are credibly simu-
lated and propagated through the entire loading range to fracture. Fractured tests may be further
evaluated through metallurgical features of parted surfaces.

B.  Binding Requirements

Going into a structural static test, the predicted design variables are the applied boundary
loads representing strategic operational environments, associated uncertainties, mechanical
response of structural elements, and material properties and limits. These predictions are verified by
their combined effects defined by the ratio of material resistive properties and the applied boundary
load. This ratio specifies the prevailing deterministic factor of safety,3 which is a binding verification
criterion, and deserves some evaluation.
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NASA’s safety criteria on polycrystalline structures are a verified 1.0 factor on yield and a 1.4
factor on ultimate. Both factors propose a few interesting realities. If the inception of plastic flow on a
test article could be experimentally detected, the measured load producing it would suitably estab-
lish the yield safety factor. However, plastic deformation4  starts in different locations, numbers, and
intensities, and it is difficult to detect and determine where and how much deformation progressed
until large enough parts have been affected at the strain sensors. This phenomenon explains why
different gauge lengths in tensile tests provide different elastic limits, why yield coefficients of varia-
tion are higher than strength variations, and why it is more difficult to detect the limit in brittle
materials. Hence, an arbitrarily selected standard for defining the yield point is the intersection of a
line parallel to and offset by 0.2 percent from the elastic stress-strain slope. For consistency, should
a similar offset be applied to the load-strain slope attained from verification test data?

Structures are often subjected to a loading history that may exceed the elastic limit and raise
the yield point for subsequent loading. The plastic flow property of metals is important in economic
manufacturing processes such as rolling, forging, drawing, extruding, stamping, bending, riveting, and
spinning. This inelastic property also allows material to flow and redistribute concentrated peak
stresses optimally and permanently, and then retain the full elastic strength for repeated cycles.
Under these and similar initial processes, the material is transformed, and the raised yield point may
obscure the operational strain limit verification and may unexpectedly reduce endurance predictions
and contingency margin to fracture.

Conversely, the onset and measured load at fracture in the loading process can be clearly
established, but the load transferred at the boundary and its propagation to critical regions may be
uniquely and unforeseeable conditioned by larger plastic deformation preceding fracture. It was this
potential transfer behavior that lead to the investigation of shifting response loads and composition
under increasingly applied boundary loading.

C. Mutating Boundary Loads

Increasing verification loads applied at test article boundaries produce progressively larger
deformations beyond the inelastic range which may distort their transmission. To sample this
phenomenon, the slope and deflection were calculated at the concentrated load on the free-end of the
cantilevered beam (fig. 1). The hypothetical aluminum beam is 10 inches long and a quarter-inch
uniform thickness. Deflections and slopes are shown for the yield and ultimate strain limits calcu-
lated5 at the fixed-end. The tangent of the free boundary slope is a measure of the consecutively
applied load decomposing from bending to bending-axial load ratio. This ratio varies with the slope
along the beam. Though the vertical scale in figure 1 is exaggerated, the slopes and displacements at
the free end are relative.

θ

Pp

N

Pθ

elastic bending

inelastic bending

θ
Pe

θslope

Figure 1.  Applied load disposition at large boundary deformation.
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Because the yield strain at the fixed-end is relatively small, the predicted free-end elastic
deflection and slope are correspondingly small, and the variation between applied and transmitted
loads is the tangent of 5˚, which is negligible. The ultimate load to fracture is twice the yield load, and
the resulting ultimate strain at the fixed-end is an order-of-magnitude larger than the yield. At ulti-
mate loading, about half the beam near the fixed-end is deflecting inelastically, and the free-end half
is deflecting elastically at a lower rate. The combined deflections predict an 18˚ slope resulting in a
33-percent bending-to-axial load ratio. The adversity of this ratio to the verification criteria is
dependent on how these components feed into and intensify critically stressed regions and how they
may change the failure mode.

It is conceivable that this phenomenon occurring with some other material, type element, and
boundary loading may allow a marginal structure to pass the static test criteria because of a more
benign transmitted load deviation, or to fail an unsuspected safe article. Consider the welded region
on a shell designed to sustain only normal tensile strain. If a large, unintentional bending deformation
is introduced by the verification load through the inelastic region, the shell will prematurely fail at the
weld. Bending causes the weld material having the lowest elastic limit to hinge and assume a dis-
proportionate share of distortion. The small weld width limits the extent of distortion to failure. The
combination of the small weld width and lowest elastic limit causes the weld material to yield first
and progressively distort most to fracture. This is a metallurgical discontinuity stress failure. Other
discontinuity stress regions may be identified by abrupt changes in loads, geometry, and temperature
which induce multiaxial loads that may be adversely intensified by distorted boundary load trans-
mission.

The cantilevered beam, the welded shell, and many other elements experiencing distorted
boundary loads are most often noted to include inplane normal and bending components.
Auspiciously, these inplane normal and bending loads are readily derivable from two opposite
mounted strain gauges. Their experimental applications include verification of applied test load on
scaled test article and off-line structural component, tracking response loads deviations during test
loading beyond the elastic limit, field, and flight test environment verification, etc. Such a technique
was developed on a one-dimensional stress element because of its wide application and its sim-
plistic illustration.

III.  TEST RESPONSE ANALYSIS

Analysis of the applied load deviation to fracture is based on selecting a simple elastic-
inelastic material model, identifying and defining structural variables, and developing a technique for
bounding and zoning stress-strain distributions over the cross section through two surface-mounted
strain gauge readings.

A.  Materials Modeling

Approximately 90 percent of primary aerostructural weight is composed of polycrystalline
materials such as high specific strength steels and aluminums. Most common material structural
properties required for a one-dimensional stress analysis are those defined by the simplest one-
dimensional test, the uniaxial tension test. Figure 2 typifies the stress-strain relationships and the
elastic and inelastic transformation limits of a polycrystalline material derived from such a test.
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The segment O-σo is the linear elastic region of the material which is governed by the
resilience between atoms within a crystal. When an applied load is relieved, the deformation will
recover to its original position, “O.” This linear stress-strain relationship defines Hooke’s law, and
the limit  is reached when atoms permanently displace along cleavage planes to new crystal lattice
sites in plastic flow. The 2-percent offset defines the yield point previously discussed.

Fty

0.2 % offset

restored  
strain

0' B D

A Ftu

constant strain 
energy flow

relaxed and 
resumed paths

STRAIN

ST
R

E
SS

C

εtu

    strain
hardeningσo

εty0

Figure 2.  Uniaxial tensile properties of polycrystalline materials.

The segment from the elastic limit, σo, up to the ultimate stress, Ftu, is the inelastic (or duc-
tile) region of the material consisting of elastic stress and plastic flow. The ratio of elastic stress and
plastic flow defines the inelastic slope, and their change rate characterizes the nonlinear property of
the material to fracture. When loaded to point “A” and relaxed, the strain decreases elastically to
point “B.” The material will have restored the elastic strain B-D, and will have permanently
deformed with a plastic strain of O’-B. Upon reloading, the unit load traces a hysteresis loop as it
approaches point “C” near point “A” from which it was unloaded, and then resumes the stress-
strain relationship as it had not relaxed.

Modeling elastic-inelastic behavior could be very difficult unless idealized into the simplest
mathematical expressions within the physical phenomena of the material and its application. Some
finite element method codes tabulate the nonlinear material coordinates of figure 2 and compute the
linear strength of materials behavior with the inelastic property in a piece-wise-linear technique.
The analytical approach used in this study modeled the total range of uniaxial stress-strain relation-
ship by the two parameter power expression,

   σ = Kεn  , (1)

where “n” is the strain-hardening exponent and “K” is the strength coefficient of the inelastic
region. The exponent n = 0 defines a perfectly plastic solid. The linear elastic region is defined by
n = 1.0  and the Young’s modulus,

   
E =

Fty
εty

 . (2)

Wherever subsequent formulations are expressed with nonlinear parameters, they may be converted
to elastic expressions through the substitution of n = 1 and K = E.

The inelastic parameters of equation (1) are curve-fitted at the extremes of the nonlinear
segment in figure 2. The strain-hardening exponent is calculated from,
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n =

log (Ftu/Fty)
log (εtu/εty)

 , (3)

and the strength coefficient is,

   
K =

Fty

εty
n  . (4)

Material stress-strain properties are customarily assumed to be symmetrical in tension and com-
pression. It must be noted, though, that for structures that are work hardened through manufacturing
shaping, milling, and other processes and are not thereafter annealed, the yield parameters in equa-
tions (3) and (4) must be derived with the reloaded values noted by the points B and C on figure 2.

B.  Structural Modeling

A rectangular cross-section element illustrated in figure 3 was selected because it repre-
sents most structural components and regions as in beams, plates, and shells. It is also the simplest
cross section to demonstrate the technique for characterizing the elastic and inelastic stress and
strain distributions, and for determining the applied loads transfer. Bending and inplane normal load-
ings are the most commonly measured components on this type of structure with back-to-back
strain gauges, and they often may be of sufficient sample to verify the load transmission of a more
complex system.

N
M

H

w

Strain gauges,upper 
and lower surfaces

Figure 3.  Combined bending and normal loading element.

The normal load, N, is constant along the thickness, H, from which the induced normal stress,

   σN = N
wH  , (5)

and strain,
   

εN = N
K wH

1
n

 , (6)

are uniformly distributed over the elastic and inelastic range. The elastic bending stress and strain
are linearly varying along the thickness. Because cross-section planes are seen to remain plane
after elastic and plastic bending, the inelastic bending strain also varies linearly along the thickness,
but the stress varies nonlinearly with equation (1). The stresses and strains at the extreme
(surface) fibers for elastic and inelastic bending are thus given5 by,
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σM = ±

2(n+2)M

H2
  , (7)

and
   

εM = ±
2(n+2)M

KH2

1

n
  , (8)

respectively.

Because inelastic bending stress is nonlinear, it cannot be directly superimposed on the
normal tension stress of equation (5), nor is the bending neutral axis expected to coincide with the
cross-section centroid. However, an interacting model may be formulated by noting that the normal
strain  is uniformly linear along the cross section and the bending strain is linearly varying along the
thickness. Since both axial strains are linear, they may be algebraically added as shown in figure
4(a). These combined strains are measured at the surfaces as ε2 and ε1. Figure 4(b) illustrates the
nonlinear bending stress distribution derived from the strain distribution using equation (1).

+y

X X

y

dy

y

dy

- CM

cent roid

bending
neut ral axis

+H/2

-H/2

εΝ εM

εy

ε2

ε1

+y

+H/2

-H/2

σΝ σM

σy

Μ
Ν

 (a) Strain distributions                  (b) Stress distributions

Figure 4.  Combined bending and normal tension strains and stresses along the thickness.

Since the elastic as well as the inelastic normal tension and bending strains are mutually
linear, the combined strain distribution in figure 4(a) is an appropriate diagram to derive variables
and relationships required to determine the verification normal and bending loads. Of the two back-
to-back surfaces measured strains, ε2 > ε1 will be assumed throughout the study to simplify elastic
and inelastic zone notations. When ε2 < εty , the combined strain distributions over the cross section
are all in one elastic zone, and, when ε1 > εty , the distributions are all one inelastic zone. The objec-
tive is now to define the elastic-inelastic zone boundaries for all other measured strain combinations
and to calculate their contributions to the resulting normal and bending loads.

The net strain from any midplane y-distance along the element thickness in figure 4(a) is
defined by the proportionality,
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   εy–ε1
ε2–ε1

=
H
2

+ y

H   ,

or
   εy = γ (0.5H + y)+ε1   , (9)

and
   y = 1

γ (εy–ε1)–0.5H   . (10)

The bending strain slope is,
   

γ =
ε2–ε1

H   . (11)

The incremental normal load along the cross-section thickness is the product of the induced stress
and unit area,

   dN = wσydy = wK εy
ndy   . (13)

Substituting equation (9) for the strain and integrating, all zone normal loads may be calculated from,

   
Nk =

wKγ n

n+1
H
2

+
ε1
γ + y

n+1

Cb

Ca

  , (14)

where Ca > y > Cb are the integration limits of a zone. A zone is bound along the y-axis by the sur-
face measured strains, ε1 and ε2, or by the material limit changes noted by εty  and ecy. Substituting
the appropriate pair of boundary strains into equation (10),

   C a,b = 1
γ εa,b–ε1 – H

2   , (15)

provides the upper and lower integration limits of each zone. The yield strain may be tension or
compression, where εcy = –εty  is assumed for a symmetrical material. The normal load across the
thickness is the sum of all the zone normal loads,

   N = ΣNk   . (16)

Bending strain along the thickness is given by εΜ y  = εy–εΝ , and the neutral bending axis is
defined by a zero bending strain (εΜ y = 0 ). Substituting εy = εΝ  into equation (10), the neutral
bending axis is,

   C M = 1
γ (εN –ε1) – 0.5 H   , (17)

where the normal strain, εN, across the thickness is determined by substituting equation (16) into
equation (6). Using equations (13) and (17), the incremental moment about the neutral axis is,

   dM = wσy(y–CM)dy = wK εy
n(y–C M)dy   . (18)

By substituting equations (9) and (17) into equation (18) and integrating, a zone moment about the
neutral axis is calculated from,
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Mk = wKγ H

2
+

ε1
γ + y

n + 1
H
2

+
ε1
γ + y

n+2
–

H
2

+
ε1
γ + C M

n+1 Cb

Ca

  . (19)

The moment about the thickness is the sum of all the zone moments,

   M = ΣMk   . (20)

A unit width, w = 1, is assumed for plates and shells from which normal loads and bending moments
are defined by kips per inch and kip-inch per inch units, respectively. Using the strain distribution
expression of equation (9), the stress distribution along each zone is given by,

   σy = K ABS(εy)
nSGN (εy)   . (21)

Expressions in absolute form allow raising strains to odd powers. SGN( ) is the signum function,
which reestablishes the sign of the expression. If its sign is positive, then the function equals +1 and
the strain is positive. If the function equals –1, the strain is negative.

These models, associated variables, and related integration limits are the means for calculat-
ing the desired normal and bending loads from any combination of elastic-plastic strain profile.

C.  Strain Profiles and Zone Limits

As the induced normal and bending loads in figure 3 increase, the strain distribution over the
element cross section progresses from totally elastic to totally inelastic in four possible profiles and
in a sequence dependent on the loading schedule. Given the values of the two measured strains, ε1
and ε2, the related profile is directly selected, and the zones and integration limits are decided as
shown in figure 5.

 

ε1

ε2

ε1

ε2

ε1

ε2

εty

ε1

ε2

εty

 εcy

yyy y

Ccy
CM

CM CM

Cty Cty
y

dy

H
2

– H
2

N
M

section 
centerline

neutral
bending axis

inelastic
inelastic

inelastic

surface measured
    strain

surface
measured strain

(I)  εcy <ε1< ε2< ε ty        (II) εcy < ε1 < ε ty < ε2         (III) ε1 < εcy < εty < ε2        (IV) εty < ε1 < ε2

Figure 5.  Strain profiles over element cross section defined by measured surface strains.
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In general, the measured strain ε2 is here assumed to be always greater than ε1, and change
in material properties is understood to be a change from elastic-to-inelastic strain noted by the yield
strain and vice versa. Therefore, if ε2 is less than tension yield, εty , and ε1  is greater than compres-
sion yield, εcy, then no change of properties transpires and the strain profile is a single elastic zone
as shown in profile (I) (fig. 5). A two-zone profile (II) is established when a material change occurs
in which the yield strain value falls between the two surface-measured strains. A double change in
materials (tension and compression yield) occurring between the measured strains distinguishes a
three-zone profile (III). When both measured strains exceed the tension yield point, the profile (IV)
is a single inelastic zone.

Perhaps a more visual appreciation of how the normal and bending stress and strain distribu-
tions interact may be realized through their orthographic projection with the material properties
shown in figure 6. Figures 6(a) and 6(b) are the stress and strain distribution diagrams, respec-
tively, over the element rectangular cross section. Figure 6(c) is the material tension stress-strain
relationship through the elastic and inelastic range. Projecting the two surface strains, ε1 and ε2, from
figure 6(b) up to the material diagram 6(c), locates the corresponding stresses which are then
projected and intersected on the stress diagram 6(b). Projecting the yield point from the material
diagram 6(c) onto the stress and strain diagrams establishes the inelastic zones (shaded area) on
the stress and strain diagrams and as imposed on the structural element.

0 0 0

0

H/2

-H/2

ε2

ε1

Fty

εMεN

ε2ε1

σn σM

centroid

bending
neutral axis

(a) strain
   diagram

(b) stress
     diagram

(c) material

bending
stress

σ2

σ1

inelastic
strain

Figure 6.  Combined normal and bending stress and strain projections.

Projecting the normal strain distribution from figure 6(a) onto the material diagram deter-
mines the corresponding stress, and that stress defines the uniform stress distribution in the stress
diagram (fig. 6(b)). The intersection of the normal and bending strain distributions locates the bend-
ing neutral axis which is extended into the stress diagram. Projecting bending strains from figure
6(a) to 6(c) and to 6(b), and intersecting associated stresses from 6(c) with 6(a) onto 6(c) develops
the nonlinear bending stress distribution (cross hatched area) in figure 6(b). The bending stress
distribution curve over the thickness in figure 6(b) resembles the elastic-inelastic stress-strain
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profile of figure 6(c). Also note that the bending stress area above the bending neutral axis is equal
and opposite to that below the bending axis, which satisfies the moment equilibrium.

Back-to-back strain gauges are sometimes used to isolate pure normal strains from bending
strains by averaging the two strain gauge output. But beyond the elastic limit, this rule is demon-
strated to be not valid, and there is no easy method for isolating the normal strain from combined
strain data except through an inelastic math model. Since distinct changes in material properties and
load paths evolve beyond the elastic limit, analysts are deprived of these insights without an expe-
dient and available to identify and define them.

D.  Normal Load and Moment Solutions

The induced combined normal and bending moment loads in each strain profile may be
resolved through a straightforward analytical routine summarized as follows:

• From the pair of surface measured strains, identify its strain profile in figure 5 through
number of zones and related boundary strains

• Using strains at zone boundaries in the selected figure 5 profile, define the integration
limits Ca,b  for each zone from equation (15)

• Substitute integration limits from equation (15) into equation (14) and solve for the normal
load NI,k of each zone in the profile

• Normal loads from all zones determined from equation (14) are summed in equation (16) to
obtain the net total normal load N of the profile

• Substitute total normal load of equation (16) into equation (6) to obtain the profile normal
strain, εN

• Locate the bending neutral axis CM using the total normal strain from equation (6) in equa-
tion (17)

• Using equation (19), determine the bending moment MI,k  in each zone about the neutral
bending axis of equation (17)

• Sum the moments in the profile as in equation (20)

• Plot strain distribution εy over the thickness using equation (9)

•  Plot stress distribution σy over the thickness using equation (21).

This direct, though laborious, routine suggests the need for a simple computer code. Conse-
quently, only those expressions unique to a zone and profile are developed in the sequence as
necessary to verify the program.

Profile (IV), (εty < ε1  < ε2), is a single inelastic zone with integration limits of Ca = H/2 and
Cb = –H/2 as calculated from equation (15) using boundary strains ε2  and ε1, respectively. The pro-
file total normal load and bending moment are,
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   NIV = wK
(n+1)γ (ε2)n+1– (ε1)n+1   , (23)

and

   
MIV = wK

γ 2
(ε2)n+2–(ε1)n+2

n+2
–

(ε2)n+1–(ε1)n+1

n+1
ε1 +ε2

2
+ γ C M   , (24)

respectively, where the neutral bending axis from equation (17) is,

   
C M = 1

γ
(ε2)n+1– (ε1)n+1

(n+1)H γ

1
n

– ε1 – H
2   . (25)

Profile (I), (εcy <  ε1< ε2  < ε ty  ), is a single elastic zone having similar integration limits as
profile (IV). Substituting the elastic properties, K = E and n = 1, into equations (23), (24), and (25)
produces the elastic normal load, bending moment and bending axis

   NI = wE
2

(ε2+ε1)   , (26)

   
MI = wEH 2

12
(ε2–ε1)   , (27)

CM = O , (28)
respectively.

Profile (II), (εcy < ε1 < εty < ε2 ), consists of two zones. The two pairs of integration limits
are Ca = H/2, Cb = Cty,  and Ca = Cty, Cb = –H/2 where,

   C ty = 1
γ (εty–ε1) – H

2   . (29)

The normal loads for the two zones are,

   NII,1 = wK
(n+1)γ (ε2)n+1– (εty)

n+1   , (30)

   NII,2 = wE
2γ (εty)

2– (ε1)2   . (31)

Bending moments are,

   
MII,1 = wK

γ 2

(ε2)n+2– (εty)
n+2

n+2
–

(ε2)n+1– (εty)
n+1

n+1
ε1+ε2

2
+ γ CM   , (32)
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and
   

MII,2 = wE
γ 2

(εty)
3– (ε1)3

3
–

(εty)
2– (ε1)2

2
ε1+ε2

2
+ γ CM   . (33)

Profile (III), (ε1 < εcy < εty < ε2 ), includes three zones having three pairs of integration
limits:  Ca = H/2, Cb = Cty ; Ca = Cty, Cb = Ccy ; Ca = Ccy, Cb = –H/2. The normal loads are ,

NIII,1  = NII,1  , (34)

   NIII,2 = wE
2γ (εty

2 –εcy
2 )   , (35)

and
   NIII,3 = wK

(n+1)γ (ABS(–εty))
n+1– (ABS(ε1))n+1   . (36)

The bending moments are,

   
MIII,1 = wK

γ 2

(ε2)n+2– (εty)
n+2

n+2
–

(ε2)n+1– (εty)
n+1

n+1
ε1+ε2

2
+ γ CM   , (37)

   
MIII,2 = wE

γ 2

2εty
3

3
– εty

2 ε1+ε2
2

+ γ CM   , (38)

   
MIII,3 = wK

γ 2

(ABS(–εty))
n+2– (ABS(ε1))n+2

n+2
–

(ABS(–εty))
n+1– (ABS(ε1))n+1

n+1
ε1+ε2

2
+ γCM   .

(39)

IV.  LOADS PROGRAM

Though programs are usually delegated to the appendix, all math models and expressions
developed above are appropriately synthesized here. Normal load and bending moment solutions
derived from two surface-measured strains include the four strain profiles illustrated in figure 5.
Code is in Microsoft Quick Basic™ for application on most small computers.

Profile (III), having the most zones, was solved and programmed as outlined in the preceding
section. Other profiles, having less zones, were adapted by resetting limits according to their zone
boundary values and positions in the strain diagrams and applying them to their appropriate zones.

'NORMAL/BENDING LOADS FROM STRAIN DATA
'NMLFSD, Microsoft Quick Basic™

' MATERIAL PROPERTIES
INPUT "ELASTIC MODULUS E=";ELM
INPUT "YIELD STRESS Fty=";FTY
INPUT "MAX STRESS Ftu=";FTU
INPUT "STRAIN @ MAX STRESS Etu=";ETU

ETY=FTY/ELM

PRINT "TENSION YIELD STRAIN";ETY
ECY=-ETY
SHE=LOG(FTU/FTY)/LOG(ETU/ETY)
PRINT "STRAIN HARDENING EXPO. n=";SHE
K=FTY/(ETY^SHE)
PRINT "STRENGTH COEF K=";K
K0=K
SHE0=SHE
ECY0=ECY
ETY0=ETY
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'TEST DATA
INPUT "RECT BAR THICKNESS H=";H
INPUT "BAR WIDTH w=";W

10 INPUT "TEST MAX STRAIN E2=";E2
INPUT "TEST MIN STRAIN E1=";E1
IF E2<E1 THEN
PRINT "MAX STRAIN < MIN STRAIN"
GOTO 10
END IF
IF E2=E1 THEN E1=0.975
SLOP=(E2-E1)/H

PRO=3
'USING PROFILE (III) (E1<ECY<ETY<E2)
IF ECY<E1 AND E1<ETY AND ETY<E2 THEN
ECY=E1:PRO=2
ELSEIF ETY<E1 AND E1<E2 THEN
ECY=E1:ETY=E1:PRO=4
ELSEIF E2<ETY AND ECY<E1 THEN
K=ELM :SHE=1:ECY=E1:ETY=E2:PRO=1
END IF

NIII1=W*K*(E2^(SHE+1)-ETY^(SHE+1))/(SLOP*(SHE+1))
NIII2=W*ELM*((ETY^2)-(ECY^2))/(2*SLOP)
NIII3=(ABS(ECY))^(SHE+1)-(ABS(E1))^(SHE+1)
NIII3=NIII3*W*K/(SLOP*(SHE+1))
NIIIT=NIII1+NIII2+NIII3
PRINT "TOTAL AXIAL LOAD N=";NIIIT
SNIII=NIIIT/W/H
PRINT "AXIAL LOAD STRESS SN=";SNIII

IF SNIII<FTY THEN
ENIII=SNIII/ELM
ELSE
ENIII=(SNIII/K)^(1/SHE)
END IF
PRINT "AXIAL LOAD STRAIN EN=";ENIII
EMMIII=E2-ENIII
PRINT "MAX BENDING STRAIN EM=";EMMIII

CMIII= (ENIII-E1)/SLOP-H/2
PRINT "BENDING NEUTRAL AXIS CM=";CMIII

MIII1=-((E2^(SHE+1))-(ETY^(SHE+1)))/(SHE+1)
MIII1=MIII1*((E1+E2)/2+CMIII*SLOP)
MIII1=MIII1+((E2^(SHE+2))-(ETY^(SHE+2)))/(SHE+2)
MIII1=MIII1*W*K/(SLOP^2)
MIII2=-((ETY^2)-(E1^2))*((E1+E2)/2+CMIII*SLOP)/2
MIII2=MIII2+((ETY^3)-(E1^3))/3
MIII2=MIII2*W*ELM/(SLOP^2)
MIII3=-((ABS(ECY))^(SHE+1)-
(ABS(E1))^(SHE+1))/(SHE+1)
MIII3=MIII3*((E1+E2)/2+CMIII*SLOP)
MIII3=MIII3+((ABS(ECY))^(SHE+2)-
(ABS(E1))^(SHE+2))/(SHE+2)
MIII3=MIII3*W*K/(SLOP^2)
MIIIT=MIII1+MIII2+MIII3
PRINT "BENDING MOMENT M=";MIIIT

RIII=MIIIT/NIIIT
PRINT"MOMENT/AXIAL LOAD RATIO R=";RIII

PrintScreen 0,0,0

'LIMITS

CTY=(ETY-E1)/SLOP-H/2
CCY=(ECY-E1)/SLOP-H/2
ETYA=FTY/ELM

' STRESS & STRAIN DISTRIBUTIONS
OPEN "CLIP:" FOR OUTPUT AS #2

PRINT "PROFILE=";PRO

IF PRO=3 THEN
YS=-.5*H: YF=CCY: MY=9
M=MY-1
DY=(YF-YS)/M
EY3=0: SY3=O
y=YS
FOR I=1 TO M
EY3=(.5*H+y)*SLOP+E1
SY3=K*((ABS(EY3)^SHE))*SGN(EY3)
WRITE #2,y,EY3,ENIII,ETYA,SY3,SNIII,FTY
PRINT y,EY3,ENIII,ETYA,SY3,SNIII,FTY
y=YS+(I+1)*DY
NEXT I
END IF

IF PRO=1 OR PRO=2 OR PRO=3 THEN
YS=CCY: YF=CTY: MY=9
IF E2<ETY THEN YF=.5*H
M=MY-1
DY=(YF-YS)/M
EY2=0: SY2=O
y=YS
FOR I=1 TO M
EY2=(.5*H+y)*SLOP+E1
SY2=ELM*EY2
WRITE #2,y,EY2,ENIII,ETYA,SY2,SNIII,FTY
PRINT y,EY2,ENIII,ETYA,SY2,SNIII,FTY
y=YS+(I+1)*DY
NEXT I
END IF

IF PRO=2 OR PRO=3 OR PRO=4 THEN
YS=CTY: YF=.5*H: MY=11
M=MY-1
DY=(YF-YS)/M
EP1=0: SP1=0
y=YS
FOR I=1 TO M
EP1=(.5*H+y)*SLOP+E1
SP1=K*((ABS(EP1)^SHE))*SGN(EP1)
WRITE #2,y,EP1,ENIII,ETYA,SP1,SNIII,FTY
PRINT y,EP1,ENIII,ETYA,SP1,SNIII,FTY
y=YS+(I+1)*DY
NEXT I
END IF

CLOSE #2
REM STOP
CLS
ETY=ETY0
ECY=ECY0
K=K0
SHE=SHE0
GOTO 10
SUB PrintScreen(scale%,x%,y%) STATIC
    '  CALCULATE ARRAY SIZE NEEDED TO GET ENTIRE
SCREEN
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max&=((4+(SYSTEM(6)+1)*2*INT(SYSTEM(5)+16)/16))/4+1
    IF max&>32767 OR max&*4+60>FRE(0) THEN
BEEP:EXIT SUB
    DIM pt%(1),screen&(max&) 'pt%() will contain 0,0
    LocalToGlobal pt%(0)     'Find window position on screen
    GET (-pt%(1), -pt%(0)) - (SYSTEM(5)-
pt%(1),SYSTEM(6)-pt%(0)),screen&
    '    "prompt" allows user to select an orientation so the dump
will
    '     fit on a page.

    OPEN "LPT1:prompt" FOR OUTPUT AS #10

     WINDOW OUTPUT #10
    IF scale% THEN PUT(0,0)-(x%,y%), screen& ELSE
PUT(0,0),screen&
    CLOSE #10
    ERASE pt%,screen&        'release memory
END SUB

Figure 7 is a program printout sample of the cross-section characteristics derived from back-
to-back strain gauge data.

ELASTIC MODULUS E=? 10500
YIELD STRESS Fty =? 38
MAX STRESS Ftu =? 58
STRAIN @ MAX STRESS Eyu =? .06
TENSION YIELD STRAIN  3.619048E - 03
STRAIN HARDENING EXPO. n =  .1505829
STRENGTH COEF  K=  88.59669
RECT BAR THICKNESS  H =?  1.4
BAR WIDTH w =?  .74
TEST MAX STRAIN  E2 =? .02
TEST MIN STRAIN  E1=?  -.01
TOTAL AXIAL LOAD N=  16.21604
AXIAL LOAD STRESS SN= 15.65255
AXIAL LOAD STRAIN EN= 1.490719E-03
MAX BENDING STRAIN EM= 1.850928E-02
BENDING NEUTRAL AXIS  CM= -.1637665
BENDING MOMENT M=  17.29161
MOMENT / AXIAL LOAD RATIO  R=  1.066328

Figure 7.  Program sample output.

Figures 8 and 9 illustrate the strain and stress distributions along the element thickness
using Cricket Graph III™ and figure 7 program input. Only solid lines are program plotted. Dashed
lines, shades, and notes are superimposed to further illustrate routine patterns and significant
characteristics.
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     Figure 8.  Strain distributions.       Figure 9.  Stress distributions.
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V.  CONCLUSIONS

Demand for ever-improving structural performance is driving design practices and manufac-
turing processes to new and innovative technologies whose ultimate success depends on the experi-
mental verification of their performance and reliability. This study examined binding verification cri-
teria and converged on a potential static test source for accepting submarginal structures for the
wrong reason or prematurely failing sound ones.

Experimental verification consists of two coherent, deterministic static test parts. Structural
response within the elastic limit is verified with a precisely specified external load representing
maximum predicted operational environments. The ultimate factor of safety covers rare events in
which no statistical design data exist and its traditional and historical usage exerts the greatest
influence on design and acceptance criteria. However, the order-of-magnitude larger strains (and
therefore displacements) imposed by the ultimate factor of safety may distort the applied load
transmission.

A technique was developed to identify and assess verification load transfer discrepancy
through back-to-back surface-mounted strain gauge data, which is applicable throughout the elastic
and inelastic range of the structural material. The technique is reduced to a user-friendly program for
convenience and expedience. The program is also applicable for monitoring structural response from
field or flight tests environments.

It is concerning that verification test results often report surface strain measurements to
conform very well with predicted math models up to the yield point, but then unexpectedly deviate
during the inelastic loading to premature fracture. Reasons offered are usually indefinite. Perhaps
this suggested technique may extend the basis for a more definite test evaluation.
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